154 research outputs found

    The Poisson bracket on free null initial data for gravity

    Full text link
    Free initial data for general relativity on a pair of intersecting null hypersurfaces are well known, but the lack of a Poisson bracket and concerns about caustics have stymied the development of a constraint free canonical theory. Here it is pointed out how caustics and generator crossings can be neatly avoided and a Poisson bracket on free data is given. On sufficiently regular functions of the solution spacetime geometry this bracket matches the Poisson bracket defined on such functions by the Hilbert action via Peierls' prescription. The symplectic form is also given in terms of free data.Comment: 4 pages,1 figure. Some changes to text to improve clarity of presentation, this is the final published versio

    so(4) Plebanski Action and Relativistic Spin Foam Model

    Get PDF
    In this note we study the correspondence between the ``relativistic spin foam'' model introduced by Barrett, Crane and Baez and the so(4) Plebanski action. We argue that the so(4)so(4) Plebanski model is the continuum analog of the relativistic spin foam model. We prove that the Plebanski action possess four phases, one of which is gravity and outline the discrepancy between this model and the model of Euclidean gravity. We also show that the Plebanski model possess another natural dicretisation and can be associate with another, new, spin foam model that appear to be the so(4)so(4) counterpart of the spin foam model describing the self dual formulation of gravity.Comment: 12 pages, REVTeX using AMS fonts. Some minor corrections and improvement

    3+1 spinfoam model of quantum gravity with spacelike and timelike components

    Get PDF
    We present a spinfoam formulation of Lorentzian quantum General Relativity. The theory is based on a simple generalization of an Euclidean model defined in terms of a field theory over a group. The model is an extension of a recently introduced Lorentzian model, in which both timelike and spacelike components are included. The spinfoams in the model, corresponding to quantized 4-geometries, carry a natural non-perturbative local causal structure induced by the geometry of the algebra of the internal gauge (sl(2,C)). Amplitudes can be expressed as integrals over the spacelike unit-vectors hyperboloid in Minkowski space, or the imaginary Lobachevskian space.Comment: 16 pages, 1 figur

    Classical GR as a topological theory with linear constraints

    Full text link
    We investigate a formulation of continuum 4d gravity in terms of a constrained topological (BF) theory, in the spirit of the Plebanski formulation, but involving only linear constraints, of the type used recently in the spin foam approach to quantum gravity. We identify both the continuum version of the linear simplicity constraints used in the quantum discrete context and a linear version of the quadratic volume constraints that are necessary to complete the reduction from the topological theory to gravity. We illustrate and discuss also the discrete counterpart of the same continuum linear constraints. Moreover, we show under which additional conditions the discrete volume constraints follow from the simplicity constraints, thus playing the role of secondary constraints. Our analysis clarifies how the discrete constructions of spin foam models are related to a continuum theory with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010 (ERE2010, Granada, Spain

    Classical GR as a topological theory with linear constraints

    Full text link
    We investigate a formulation of continuum 4d gravity in terms of a constrained topological (BF) theory, in the spirit of the Plebanski formulation, but involving only linear constraints, of the type used recently in the spin foam approach to quantum gravity. We identify both the continuum version of the linear simplicity constraints used in the quantum discrete context and a linear version of the quadratic volume constraints that are necessary to complete the reduction from the topological theory to gravity. We illustrate and discuss also the discrete counterpart of the same continuum linear constraints. Moreover, we show under which additional conditions the discrete volume constraints follow from the simplicity constraints, thus playing the role of secondary constraints. Our analysis clarifies how the discrete constructions of spin foam models are related to a continuum theory with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010 (ERE2010, Granada, Spain

    Classical GR as a topological theory with linear constraints

    Full text link
    We investigate a formulation of continuum 4d gravity in terms of a constrained topological (BF) theory, in the spirit of the Plebanski formulation, but involving only linear constraints, of the type used recently in the spin foam approach to quantum gravity. We identify both the continuum version of the linear simplicity constraints used in the quantum discrete context and a linear version of the quadratic volume constraints that are necessary to complete the reduction from the topological theory to gravity. We illustrate and discuss also the discrete counterpart of the same continuum linear constraints. Moreover, we show under which additional conditions the discrete volume constraints follow from the simplicity constraints, thus playing the role of secondary constraints. Our analysis clarifies how the discrete constructions of spin foam models are related to a continuum theory with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010 (ERE2010, Granada, Spain

    The volume operator in covariant quantum gravity

    Full text link
    A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In particular, the geometrical observable giving the area of a surface has been shown to be the same as the one in loop quantum gravity. Here we discuss the volume observable. We derive the volume operator in the covariant theory, and show that it matches the one of loop quantum gravity, as does the area. We also reconsider the implementation of the constraints that defines the model: we derive in a simple way the boundary Hilbert space of the theory from a suitable form of the classical constraints, and show directly that all constraints vanish weakly on this space.Comment: 10 pages. Version 2: proof extended to gamma > 1

    Spin foam model for Lorentzian General Relativity

    Get PDF
    We present a spin foam formulation of Lorentzian quantum General Relativity. The theory is based on a simple generalization of an Euclidean model defined in terms of a field theory over a group. Its vertex amplitude turns out to be the one recently introduced by Barrett and Crane. As in the case of its Euclidean relatives, the model fully implements the desired sum over 2-complexes which encodes the local degrees of freedom of the theory.Comment: 8 pages, 1 figur

    The fermionic contribution to the spectrum of the area operator in nonperturbative quantum gravity

    Full text link
    The role of fermionic matter in the spectrum of the area operator is analyzed using the Baez--Krasnov framework for quantum fermions and gravity. The result is that the fermionic contribution to the area of a surface SS is equivalent to the contribution of purely gravitational spin network's edges tangent to SS. Therefore, the spectrum of the area operator is the same as in the pure gravity case.Comment: 10 pages, revtex file. Revised versio

    Spacetime as a Feynman diagram: the connection formulation

    Get PDF
    Spin foam models are the path integral counterparts to loop quantized canonical theories. In the last few years several spin foam models of gravity have been proposed, most of which live on finite simplicial lattice spacetime. The lattice truncates the presumably infinite set of gravitational degrees of freedom down to a finite set. Models that can accomodate an infinite set of degrees of freedom and that are independent of any background simplicial structure, or indeed any a priori spacetime topology, can be obtained from the lattice models by summing them over all lattice spacetimes. Here we show that this sum can be realized as the sum over Feynman diagrams of a quantum field theory living on a suitable group manifold, with each Feynman diagram defining a particular lattice spacetime. We give an explicit formula for the action of the field theory corresponding to any given spin foam model in a wide class which includes several gravity models. Such a field theory was recently found for a particular gravity model [De Pietri et al, hep-th/9907154]. Our work generalizes this result as well as Boulatov's and Ooguri's models of three and four dimensional topological field theories, and ultimately the old matrix models of two dimensional systems with dynamical topology. A first version of our result has appeared in a companion paper [gr-qc\0002083]: here we present a new and more detailed derivation based on the connection formulation of the spin foam models.Comment: 32 pages, 2 figure
    • …
    corecore